Python Telegram Bot Documentation
Release 12.2.0

Leandro Toledo

Dec 31, 2020

Contents

Guides and tutorials 1
Examples 3
Reference 5
3.1 telegram.ext package L. e 5
3.1.1 telegram.ext.Updater e 5
3.1.2 telegram.ext.Dispatcher e e 8
3.1.3 telegrameext.filters Module e 11
3.1.4 telegram.extJob e 19
3.1.5 telegram.extJobQueue L 20
3.1.6 telegram.ext.MessageQuUeueo e e 22
3.1.7 telegram.ext.DelayQueue 23
3.1.8 telegram.ext.CallbackContext. v i i v it e e 25
3.1.9 Handlers. 26
3110 Persistence e e e e e e 52
32 telegrampackage e 56
32.1 telegram. Animationo e e e e e e e 56
322 telegram. Audio L. e e e e e e e e 58
323 telegram.Bot e e e 59
324 telegram.CallbackQuery e 96
325 telegram.Chat e 99
32.6 telegram.ChatAction 103
3.2.7 telegram.ChatMember 0 i e e e e e e 104
3.2.8 telegram.ChatPermissions i it i e e e e 107
329 telegram.ChatPhoto 108
3.2.10 telegram.constants Module oL L oo 109
3211 telegram.Contact L L e e e e e e e e e e e 110
3.2.12 telegram.Document e e 111
3.2.13 telegram.errormodule L L e e e e 112
3.2.14 telegram.File e e e e 112
3.2.15 telegram.ForceReply 113
3.2.16 telegram.InlineKeyboardButton o oL 114
3.2.17 telegram.InlineKeyboardMarkup oL o o 115
3.2.18 telegram.InputFile 116
3.2.19 telegram.InputMedia L e e e e 117
3.2.20 telegram.InputMediaAnimationo o 117
3221 telegram.InputMediaAudio oL 118
3.2.22 telegram.InputMediaDocument oo 119
3.2.23 telegram.InputMediaPhoto e 120
3.2.24 telegram.InputMediaVideo L. e e 121

3.2.25 telegram.KeyboardButton L. e 122

3.2.26 telegram.Location e e e e e e e e e e e e 123
3227 telegram.LoginUrl e 123
3228 telegram.Messageo e e e 124
3.2.29 telegram.MessageEntity 138
3230 telegram.ParseMode 139

3.2.31 telegram.PhotoSize e e e 140
3.232 telegram.Poll e e 141
3.233 telegram.PollOption. e 141
3.2.34 telegram.ReplyKeyboardRemove o0 L. 141
3.2.35 telegram.ReplyKeyboardMarkup L oo 142
3.2.36 telegram.ReplyMarkup e e e 144
3.2.37 telegram.TelegramObject o e e e e e 145
3238 telegram.Update 145
3239 telegram.User e 147
3.240 telegram.UserProfilePhotos L 150

3241 telegram.Venue e e e e e e 150
3.242 telegram.Video L. e e e e e e e e 151
3.243 telegram.VideoNote L e e e e e e 152
3244 telegram.Voice e e 153
3.2.45 telegram.WebhookInfo 154
3246 Stickers e e e 155
3247 InlineMode L e e 158
3248 Paymentso e e e e e e e e e e e e e e e 188
3249 Games e e 194
3250 Passport 197

3.3 telegram.utils package L. e e 208
3.3.1 telegram.utils.helpers Module e 208

3.3.2 telegram.utils.promise.Promise e 210

3.3.3 telegram.utils.request.Request L. L L 211

34 Changelog e e e e e e 212
34.1 Changelog oL e e e 212
Python Module Index 229
Index 231

cHAPTER 1

Guides and tutorials

If you’re just starting out with the library, we recommend following our “Your first Bot” tutorial that you can find
on our wiki. On our wiki you will also find guides like how to use handlers, webhooks, emoji, proxies and much
more.

https://github.com/python-telegram-bot/python-telegram-bot/wiki/Extensions-%E2%80%93-Your-first-Bot
https://github.com/python-telegram-bot/python-telegram-bot/wiki

Python Telegram Bot Documentation, Release 12.2.0

2 Chapter 1. Guides and tutorials

CHAPTER 2

Examples

A great way to learn is by looking at examples. Ours can be found at our github in the examples folder.

https://github.com/python-telegram-bot/python-telegram-bot/tree/master/examples

Python Telegram Bot Documentation, Release 12.2.0

4 Chapter 2. Examples

CHAPTER 3

Reference

Below you can find a reference of all the classes and methods in python-telegram-bot. Apart from the telegram.ext
package the objects should reflect the types defined in the official telegram bot api documentation.

3.1 telegram.ext package

3.1.1 telegram.ext.Updater

class telegram.ext.Updater (token=None, base_url=None, workers=4, bot=None,
private_key=None, private_key_password=None,
user_sig_handler=None, request_kwargs=None, persis-

tence=None, use_context=False)
Bases: object

This class, which employs the telegram. ext.Dispatcher, provides a frontend to telegram. Bot
to the programmier, so they can focus on coding the bot. Its purpose is to receive the updates from Telegram
and to deliver them to said dispatcher. It also runs in a separate thread, so the user can interact with the bot,
for example on the command line. The dispatcher supports handlers for different kinds of data: Updates
from Telegram, basic text commands and even arbitrary types. The updater can be started as a polling
service or, for production, use a webhook to receive updates. This is achieved using the WebhookServer
and WebhookHandler classes.

bot
The bot used with this Updater.

Type telegram.Bot

user_sig_handler
signals the updater will respond to.

Type signal

update_queue
Queue for the updates.

Type Queue

job_queue
Jobqueue for the updater.

https://core.telegram.org/bots/api

Python Telegram Bot Documentation, Release 12.2.0

Type telegram.ext.JobQueue

dispatcher
Dispatcher that handles the updates and dispatches them to the handlers.

Type telegram.ext.Dispatcher

running

Indicates if the updater is running.

Type bool

persistence
Optional. The persistence class to store data that should be persistent over restarts.

Type telegram.ext.BasePersistence

use_context
True if using context based callbacks.

Type bool, optional

Parameters

token (str, optional) — The bot’s token given by the @BotFather.
base_url (str, optional) — Base_url for the bot.

workers (int, optional) — Amount of threads in the thread pool for functions deco-
rated with @run_async.

bot (telegram.Bot, optional) — A pre-initialized bot instance. If a pre-initialized
bot is used, it is the user’s responsibility to create it using a Request instance with a
large enough connection pool.

private_key (bytes, optional) — Private key for decryption of telegram passport
data.

private_key_ password (bytes, optional) — Password for above private key.

user_sig_handler (function, optional) — Takes signum, frame as posi-
tional arguments. This will be called when a signal is received, defaults are (SIGINT,
SIGTERM, SIGABRT) setable with 1d1e.

request_kwargs (dict, optional) — Keyword args to control the creation of
a telegram.utils.request.Request object (ignored if bot argument is used). The re-
quest_kwargs are very useful for the advanced users who would like to control the
default timeouts and/or control the proxy used for http communication.

use_context (bool, optional) — If set to True Use the context based callback API.
During the deprecation period of the old API the default is False. New users: set this
to True.

persistence (telegram.ext.BasePersistence, optional) — The persis-
tence class to store data that should be persistent over restarts.

Note: You must supply either a bot or a token argument.

Raises ValueError —If both token and bot are passed or none of them.

idle (stop_signals=(<Signals.SIGINT: 2>, <Signals.SIGTERM: 15>, <Signals.SIGABRT: 6>))
Blocks until one of the signals are received and stops the updater.

Parameters stop_signals (iterable) — Iterable containing signals from the signal

module that should be subscribed to. Updater.stop() will be called on receiving one of
those signals. Defaults to (SIGINT, SIGTERM, SIGABRT).

Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

start_polling (poll_interval=0.0, timeout=10, clean=False, bootstrap_retries=-1,

read_latency=2.0, allowed_updates=None)

Starts polling updates from Telegram.

Parameters

poll_interval (float, optional) — Time to wait between polling updates from
Telegram in seconds. Default is 0.0.

timeout (float, optional) — Passed to telegram. Bot.get_updates.

clean (bool, optional) — Whether to clean any pending updates on Telegram servers
before actually starting to poll. Default is False.

bootstrap_retries (int, optional) — Whether the bootstrapping phase of the
Updater will retry on failures on the Telegram server.

— <0 - retry indefinitely (default)
— 0 - no retries
— >0 - retry up to X times

allowed_updates (List[str], optional) — Passed to telegram.Bot.
get_updates.

read_latency (float | int, optional) — Grace time in seconds for receiving the
reply from server. Will be added to the fimeout value and used as the read timeout
from server (Default: 2).

Returns The update queue that can be filled from the main thread.

Return type Queue

start_webhook (listen="127.0.0.1°, port=80, url_path=", cert=None, key=None, clean=False,

bootstrap_retries=0, webhook_url=None, allowed_updates=None)

Starts a small http server to listen for updates via webhook. If cert and key are not provided, the
webhook will be started directly on http://listen:port/url_path, so SSL can be handled by another ap-
plication. Else, the webhook will be started on https://listen:port/url_path

Parameters

listen (str, optional) — IP-Address to listen on. Default 127.0.0.1.
port (int, optional) — Port the bot should be listening on. Default 80.
url_path (str, optional) — Path inside url.

cert (str, optional) — Path to the SSL certificate file.

key (str, optional) — Path to the SSL key file.

clean (bool, optional) — Whether to clean any pending updates on Telegram servers
before actually starting the webhook. Default is False.

bootstrap_retries (int, optional) — Whether the bootstrapping phase of the
Updater will retry on failures on the Telegram server.

— <0 - retry indefinitely (default)
— 0 - no retries
— >0 - retry up to X times

webhook_url (str, optional) — Explicitly specify the webhook url. Useful behind
NAT, reverse proxy, etc. Default is derived from listen, port & url_path.

allowed_updates (List[str], optional) — Passed to telegram.Bot.
set_webhook.

Returns The update queue that can be filled from the main thread.

3.1. telegram.ext package 7

http://listen:port/url_path
https://listen:port/url_path

Python Telegram Bot Documentation, Release 12.2.0

Return type Queue

stop ()
Stops the polling/webhook thread, the dispatcher and the job queue.

3.1.2 telegram.ext.Dispatcher

class telegram.ext.Dispatcher (bot, update_queue, workers=4, exception_event=None,

Jjob_queue=None, persistence=None, use_context=False)
Bases: object

This class dispatches all kinds of updates to its registered handlers.

bot
The bot object that should be passed to the handlers.

Type telegram.Bot

update_queue
The synchronized queue that will contain the updates.

Type Queue

job_queue
Optional. The telegram.ext.JobQueue instance to pass onto handler callbacks.

Type telegram.ext.JobQueue

workers
Number of maximum concurrent worker threads for the @ run_async decorator.

Type int

user_ data
A dictionary handlers can use to store data for the user.

Type defaultdict

chat_data
A dictionary handlers can use to store data for the chat.

Type defaultdict

persistence
Optional. The persistence class to store data that should be persistent over restarts

Type telegram.ext.BasePersistence

Parameters
* bot (telegram.Bot)— The bot object that should be passed to the handlers.
* update_gqueue (Queue) — The synchronized queue that will contain the updates.

* job_queue (telegram.ext.JobQueue, optional) — The telegram.ext.
JobQueue instance to pass onto handler callbacks.

* workers (int, optional) — Number of maximum concurrent worker threads for the
@run_async decorator. defaults to 4.

* persistence (telegram.ext.BasePersistence, optional) — The persis-
tence class to store data that should be persistent over restarts

* use_context (bool, optional) — If set to True Use the context based callback API.
During the deprecation period of the old API the default is False. New users: set this
to True.

8 Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

add_error_ handler (callback)
Registers an error handler in the Dispatcher. This handler will receive every error which happens in
your bot.

Warning: The errors handled within these handlers won’t show up in the logger, so you need to make
sure that you reraise the error.

Parameters callback (callable) — The callback function for this error handler. Will
be called when an error is raised. Callback signature for context based API:

def callback (update: Update, context: CallbackContext)

The error that happened will be present in context.error.

Note: See https://git.io/fxJuV for more info about switching to context based API.

add_handler (handler, group=0)
Register a handler.

TL;DR: Order and priority counts. O or 1 handlers per group will be used.

A handler must be an instance of a subclass of telegram.ext.Handler. All handlers are or-
ganized in groups with a numeric value. The default group is 0. All groups will be evaluated
for handling an update, but only O or 1 handler per group will be used. If telegram.ext.
DispatcherHandlerStop is raised from one of the handlers, no further handlers (regardless
of the group) will be called.

The priority/order of handlers is determined as follows:

* Priority of the group (lower group number == higher priority)

* The first handler in a group which should handle an update (see telegram.ext.Handler.
check_update) will be used. Other handlers from the group will not be used. The order in
which handlers were added to the group defines the priority.

Parameters
* handler (telegram.ext.Handler)— A Handler instance.
* group (int, optional) — The group identifier. Default is 0.

dispatch_error (update, error)
Dispatches an error.

Parameters
* update (str | telegram. Update | None) — The update that caused the error
¢ error (Exception) — The error that was raised.

error_handlers = None
A list of errorHandlers.

Type List[callable]

classmethod get_instance()
Get the singleton instance of this class.

Returns telegram.ext.Dispatcher
Raises RuntimeError

groups = None
A list with all groups.

Type List[int]

3.1.

telegram.ext package 9

https://git.io/fxJuV

Python Telegram Bot Documentation, Release 12.2.0

handlers = None
Holds the handlers per group.

Type Dict[int, List{telegram.ext.Handler]]

process_update (update)
Processes a single update.

Parameters update (str | telegram.Update | telegram.TelegramError) —

The update to process.

remove_error_handler (callback)
Removes an error handler.

Parameters callback (callable) - The error handler to remove.

remove_handler (handler, group=0)
Remove a handler from the specified group.

Parameters

* handler (telegram.ext.Handler)— A Handler instance.

» group (object, optional) — The group identifier. Default is O.

run_async (func, *args, ¥**kwargs)
Queue a function (with given args/kwargs) to be run asynchronously.

telegram.ext.CallbackContext. See its docs for more info.

Warning: If you're using @run_async you cannot rely on adding custom attributes to

Parameters

e func (callable) - The function to run in the thread.

* xargs (tuple, optional) — Arguments to func.

* xxkwargs (dict, optional) — Keyword arguments to func.
Returns Promise

running = None
Indicates if this dispatcher is running.

Type bool

start (ready=None)
Thread target of thread ‘dispatcher’.

Runs in background and processes the update queue.

Parameters ready (threading.Event, optional) — If specified, the event will be set

once the dispatcher is ready.

stop ()
Stops the thread.

update_persistence ()
Update user._dataand chat_datain persistence.

user_data = None
A dictionary handlers can use to store data for the user.

Type dict

10

Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

3.1.3 telegram.ext.filters Module

This module contains the Filters for use with the MessageHandler class.

class telegram.ext.filters.Filters
Bases: object

Predefined filters for use as the filter argument of telegram.ext .MessageHandler.

Examples

Use MessageHandler (Filters.video, callback_method) to filter all video messages. Use
MessageHandler (Filters.contact, callback_method) for all contacts. etc.

all = Filters.all
All Messages.

animation = Filters.animation
Messages that contain telegram.Animation.

audio = Filters.audio
Messages that contain telegram.Audio.

class caption_entity (entity_type)
Bases: telegram.ext.filters.BaseFilter

Filters media messages to only allow those which have a telegram.MessageEnt ity where their
type matches entity_type.

Examples

Example MessageHandler (Filters.caption_entity ("hashtag"),
callback_method)

Parameters entity_type — Caption Entity type to check for. All types can be found as
constants in telegram.MessageEntity.

class chat (chat_id=None, username=None)
Bases: telegram.ext.filters.BaseFilter

Filters messages to allow only those which are from specified chat ID.

Examples

MessageHandler (Filters.chat (-1234), callback_method)

Parameters
e chat_id (int | List[int], optional) — Which chat ID(s) to allow through.

* username (str | List[str], optional) — Which username(s) to allow through. If
username start swith ‘@’ symbol, it will be ignored.

Raises ValueError - If chat_id and username are both present, or neither is.
command = Filters.command
Messages starting with /.

contact = Filters.contact
Messages that contain telegram.Contact.

3.1. telegram.ext package 11

Python Telegram Bot Documentation, Release 12.2.0

document = Filters.document

Subset for messages containing a document/file.

Examples

Use these filters like: Filters.document .mp3, Filters.document.
mime_type ("text/plain") etc. Or use just Filters.document for all document
messages.

category
This Filter filters documents by their category in the mime-type attribute.

Example

Filters.documents.category ('audio/") filters all types of audio sent as file, for
example ‘audio/mpeg’ or ‘audio/x-wav’. The following attributes can be used as a shortcut like:
Filters.document.audio

application
audio

image

video

text

mime_type
This Filter filters documents by their mime-type attribute.

Example

Filters.documents.mime_type ('audio/mpeqg") filters all audio in mp3 format. The
following attributes can be used as a shortcut like: Filters.document. jpg

apk
doc
docx
exe
gif
P9
mp3
pdf
pPY
svg
txt
targz

wav

zip

12

Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

category
This Filter filters documents by their category in the mime-type attribute

Note: This Filter only filters by the mime_type of the document, it doesn’t check the validity of
the document. The user can manipulate the mime-type of a message and send media with wrong
types that don’t fit to this handler.

Example

Filters.documents.category ('audio/") filters all types of audio sent as file, for
example ‘audio/mpeg’ or ‘audio/x-wav’

application
Same as Filters.document.category ("application").

audio
Same as Filters.document.category ("audio").

image
Same as Filters.document.category ("image").

video
Same as Filters.document.category ("video").

text
Same as Filters.document.category ("text").

mime_type
This Filter filters documents by their mime-type attribute

Note: This Filter only filters by the mime_type of the document, it doesn’t check the validity of
document.

The user can manipulate the mime-type of a message and send media with wrong types that don’t
fit to this handler.

Example

Filters.documents.mime_type ('audio/mpeg"') filters all audio in mp3 format.

apk
Same as Filters.document.mime_type ("application/vnd.android.
package—archive")-

doc
Same as Filters.document .mime_type ("application/msword") -

docx
Same as Filters.document.mime_type ("application/vnd.
openxmlformats-officedocument.wordprocessingml.document") -

exe
Same as Filters.document.mime_type ("application/
x-ms—dos—executable") -
gif
Same as Filters.document .mime_type ("video/mp4") -
jpg
Same as Filters.document .mime_type ("image/ jpeg") -

3.1. telegram.ext package 13

Python Telegram Bot Documentation, Release 12.2.0

mp3
Same as Filters.document .mime_type ("audio/mpeg") -

pdf
Same as Filters.document .mime_type ("application/pdf")-

194
Same as Filters.document .mime_type ("text/x—-python") -

svg
Same as Filters.document .mime_type ("image/svg+xml") -

txt
Same as Filters.document .mime_type ("text/plain")-

targz
Same as Filters.document .mime_type ("application/x-compressed-tar")-

wav
Same as Filters.document .mime_type ("audio/x-wav") -

xml

Same as Filters.document .mime_type ("application/xml")-
zip

Same as Filters.document .mime_type ("application/zip")-

class entity (entity_type)
Bases: telegram.ext.filters.BaseFilter

Filters messages to only allow those which have a telegram. MessageEntity where their type
matches entity_type.

Examples

Example MessageHandler (Filters.entity ("hashtag"), callback_method)

Parameters entity_type — Entity type to check for. All types can be found as constants
in telegram.MessageEntity.

forwarded = Filters.forwarded
Messages that are forwarded.

game = Filters.game
Messages that contain telegram. Game.

group = Filters.group
Messages sent in a group chat.

invoice = Filters.invoice
Messages that contain telegram. Invoice.

class language (lang)
Bases: telegram.ext.filters.BaseFilter

Filters messages to only allow those which are from users with a certain language code.

Note: According to official telegram api documentation, not every single user has the language_code
attribute. Do not count on this filter working on all users.

Examples

14 Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

MessageHandler (Filters.language ("en"), callback_method)

Parameters lang (str | List[str]) — Which language code(s) to allow through. This
will be matched using . startswith meaning that ‘en’ will match both ‘en_US’ and
‘en_GB’.

location = Filters.location
Messages that contain telegram. Location.

passport_data = Filters.passport_data
Messages that contain a telegram.PassportData

photo = Filters.photo
Messages that contain telegram.PhotoSize.

private = Filters.private
Messages sent in a private chat.

class regex (pattern)
Bases: telegram.ext.filters.BaseFilter

Filters updates by searching for an occurrence of pattern in the message text. The re.search
function is used to determine whether an update should be filtered.

Refer to the documentation of the re module for more information.

To get the groups and groupdict matched, see telegram.ext.CallbackContext.matches.

Examples

Use MessageHandler (Filters.regex (r'help'), callback) to capture all messages
that contain the word help. You can also use MessageHandler (Filters.regex (re.
compile (r'help', re.IGNORECASE), callback) if you want your pattern to be case in-
sensitive. This approach is recommended if you need to specify flags on your pattern.

Note: Filters use the same short circuiting logic that pythons and, or and not. This means that for
example:

>>> Filters.regex(r'(a?x) ') | Filters.regex(r' (b?x)")

With a message.text of x, will only ever return the matches for the first filter, since the second one is
never evaluated.

Parameters pattern (str|Pattern)— The regex pattern.
reply = Filters.reply
Messages that are a reply to another message.

status_update = Filters.status_update
Subset for messages containing a status update.

Examples

Use these filters like: Filters.status_update.new_chat_members etc. Or use just
Filters.status_update for all status update messages.

chat_created
Messages that contain telegram.Message.group_chat_created,

3.1. telegram.ext package 15

Python Telegram Bot Documentation, Release 12.2.0

telegram.Message. supergroup_chat_created or telegram.Message.

channel_chat_created.

delete_chat_photo
Messages that contain telegram.Message.delete_chat_photo.

left_chat_member
Messages that contain telegram.Message. left_chat_member.

migrate

Messages that contain telegram.Message.migrate_from chat_id or :attr:

gram.Message.migrate_from_chat_id.

new_chat_members
Messages that contain telegram.Message.new_chat_members.

new_chat_photo
Messages that contain telegram.Message.new_chat_photo.

new_chat_title
Messages that contain telegram.Message.new_chat_title.

pinned _message
Messages that contain telegram.Message.pinned_message.

sticker = Filters.sticker
Messages that contain telegram. Sticker.

successful_payment = Filters.successful_ payment
Messages that confirm a telegram. SuccessfulPayment.

text = Filters.text
Text Messages.

update = _UpdateType
Subset for filtering the type of update.

tele-

Examples

Use these filters like: Filters.update.message or Filters.update.channel_posts

etc. Oruse just Filters.update for all types.

message
Updates with telegram. Update.message

edited message
Updates with telegram. Update.edited message

messages

Updates with either telegram.Update.message or telegram.Update.

edited_message

channel_post
Updates with telegram. Update.channel_post

edited_channel_post
Updates with telegram. Update.edited channel_post

channel_posts

Updates with either telegram.Update.channel_post or telegram.Update.

edited channel_post

class user (user_id=None, username=None)
Bases: telegram.ext.filters.BaseFilter

Filters messages to allow only those which are from specified user ID.

16

Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

Examples

MessageHandler (Filters.user (1234), callback_method)

Parameters
e user_id (int | List[int], optional) — Which user ID(s) to allow through.

* username (str | List[str], optional) — Which username(s) to allow through. If
username starts with ‘@’ symbol, it will be ignored.

Raises ValueError —If chat_id and username are both present, or neither is.
venue = Filters.venue
Messages that contain telegram. Venue.

video = Filters.video
Messages that contain telegram. Video.

video_note = Filters.video_note
Messages that contain telegram. VideoNote.

voice = Filters.voice
Messages that contain telegram. Voice.

class telegram.ext.filters.BaseFilter
Bases: object

Base class for all Message Filters.
Subclassing from this class filters to be combined using bitwise operators:

And:

’>>> (Filters.text & Filters.entity (MENTION))

Or:

’>>> (Filters.audio | Filters.video)

Not:

’>>> ~ Filters.command

Also works with more than two filters:

>>> (Filters.text & (Filters.entity(URL) | Filters.entity (TEXT_LINK)))
>>> Filters.text & (~ Filters.forwarded)

Note: Filters use the same short circuiting logic that pythons and, or and not. This means that for example:

>>> Filters.regex(r'(a?x)') | Filters.regex(r' (b?x)")

With a message.text of x, will only ever return the matches for the first filter, since the second one is never
evaluated.

If you want to create your own filters create a class inheriting from this class and implement a filter method
that returns a boolean: True if the message should be handled, False otherwise. Note that the filters work
only as class instances, not actual class objects (so remember to initialize your filter classes).

By default the filters name (what will get printed when converted to a string for display) will be the class
name. If you want to overwrite this assign a better name to the name class variable.

3.1. telegram.ext package 17

Python Telegram Bot Documentation, Release 12.2.0

name
Name for this filter. Defaults to the type of filter.

Type str

update_filter
Whether this filter should work on update. If False it will run the filter on update.
effective_message’ . Defaultis False.

Type bool

data_filter
Whether this filter is a data filter. A data filter should return a dict with lists. The dict will be merged
with telegram.ext.CallbackContext’s internal dict in most cases (depends on the handler).

Type bool

filter (update)
This method must be overwritten.

Note: If update filter is false then the first argument is message and of type telegram.
Message.

Parameters update (telegram. Update)— The update that is tested.
Returns dict or bool
class telegram.ext.filters.InvertedFilter (f)
Bases: telegram.ext.filters.BaseFilter
Represents a filter that has been inverted.
Parameters £ — The filter to invert.

filter (update)
This method must be overwritten.

Note: If update_filter is false then the first argument is message and of type telegram.
Message.

Parameters update (telegram. Update) — The update that is tested.
Returns dict orbool
class telegram.ext.filters.MergedFilter (base_filter, and_filter=None, or_filter=None)
Bases: telegram.ext.filters.BaseFilter
Represents a filter consisting of two other filters.
Parameters
* base_filter — Filter 1 of the merged filter

* and_filter — Optional filter to “and” with base_filter. Mutually exclusive with
or_filter.

* or_filter — Optional filter to “or” with base_filter. Mutually exclusive with
and_filter.

filter (update)
This method must be overwritten.

18 Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

Note: If update_filter is false then the first argument is message and of type telegram.
Message.

Parameters update (telegram. Update)— The update that is tested.

Returns dict orbool

3.1.4 telegram.ext.Job

class telegram.ext.Job (callback, interval=None, repeat=True, context=None, days=(0, 1, 2, 3,

4,5, 6), name=None, job_queue=None)
Bases: object

This class encapsulates a Job.

callback
The callback function that should be executed by the new job.

Type callable

context
Optional. Additional data needed for the callback function.
Type object
name

Optional. The name of the new job.

Type str

Parameters

* callback (callable) — The callback function that should be executed by the new
job. It should take bot, job as parameters, where job isthe telegram.ext.Job
instance. It can be used to access it’s context or change it to a repeating job.

* interval (int | float | datetime.timedelta, optional) — The interval in
which the job will run. If itis an int or a float, it will be interpreted as seconds. If
you don’t set this value, you must set repeat to False and specify next_t when
you put the job into the job queue.

* repeat (bool, optional) — If this job should be periodically execute its callback func-
tion (True) or only once (False). Defaults to True.

* context (object, optional) — Additional data needed for the callback function. Can
be accessed through job.context in the callback. Defaults to None.

* name (str, optional) — The name of the new job. Defaultsto callback._ _name_ .

* days (Tuple[int], optional) — Defines on which days of the week the job should run.
Defaults to Days . EVERY_DAY

* job_queue (telegram.ext.JobQueue, optional) — The JobQueue this job be-
longs to. Only optional for backward compatibility with JobQueue . put ().
days
Optional. Defines on which days of the week the job should run.
Type Tuple[int]

enabled
Whether this job is enabled.

Type bool

3.1. telegram.ext package 19

Python Telegram Bot Documentation, Release 12.2.0

interval
Optional. The interval in which the job will run.

Type int | float |datetime.timedelta

interval seconds
The interval for this job in seconds.

Type int

job_queue
Optional. The JobQueue this job belongs to.

Type telegram.ext.JobQueue

removed
Whether this job is due to be removed.

Type bool

repeat
Optional. If this job should periodically execute its callback function.

Type bool

run (dispatcher)
Executes the callback function.

schedule_removal ()

Schedules this job for removal from the JobQueue. It will be removed without executing its callback
function again.

3.1.5 telegram.ext.JobQueue

class telegram.ext.JobQueue (bot=None)
Bases: object

This class allows you to periodically perform tasks with the bot.

_queue
The queue that holds the Jobs.

Type PriorityQueue

bot
The bot instance that should be passed to the jobs. DEPRECATED: Use set_dispatcher instead.

Type telegram.Bot

get_jobs_by_name (name)
Returns a tuple of jobs with the given name that are currently in the JobQueue

jobs ()
Returns a tuple of all jobs that are currently in the JobQueue.

run_daily (callback, time, days=(0, 1, 2, 3, 4, 5, 6), context=None, name=None)
Creates a new Job that runs on a daily basis and adds it to the queue.

Parameters

* callback (callable)— The callback function that should be executed by the new
job. It should take bot, Jjob as parameters, where job is the telegram.ext.
Job instance. It can be used to access its Job . context or change it to a repeating
job.

* time (datetime.time) — Time of day at which the job should run.

* days (Tuple[int], optional) — Defines on which days of the week the job should run.
Defaults to EVERY_DAY

20 Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

* context (object, optional) — Additional data needed for the callback function.
Can be accessed through job.context in the callback. Defaults to None.

* name (str, optional) — The name of the new job. Defaults to callback.
__name__.

Returns The new Job instance that has been added to the job queue.

Return type telegram.ext.Job

Notes

Daily is just an alias for “24 Hours”. That means that if DST changes during that interval, the job
might not run at the time one would expect. It is always recommended to pin servers to UTC time,
then time related behaviour can always be expected.

run_once (callback, when, context=None, name=None)
Creates a new Job that runs once and adds it to the queue.

Parameters

* callback (callable)—The callback function that should be executed by the new
job. It should take bot, job as parameters, where job is the telegram.ext.
Job instance. It can be used to access its job.context or change it to a repeating
job.

* when (int | float | datetime.timedelta | datetime.datetime |
datetime.time) — Time in or at which the job should run. This parameter will
be interpreted depending on its type.

— int or float will be interpreted as “seconds from now” in which the job should
run.

— datetime.timedelta will be interpreted as “time from now” in which the job
should run.

— datetime.datetime will be interpreted as a specific date and time at which
the job should run.

— datetime.time will be interpreted as a specific time of day at which the job
should run. This could be either today or, if the time has already passed, tomorrow.

e context (object, optional) — Additional data needed for the callback function.
Can be accessed through job.context in the callback. Defaults to None.

* name (str, optional) — The name of the new job. Defaults to callback.
__name__.

Returns The new Job instance that has been added to the job queue.
Return type telegram.ext.Job

run_repeating (callback, interval, first=None, context=None, name=None)
Creates a new Job that runs at specified intervals and adds it to the queue.

Parameters

* callback (callable)— The callback function that should be executed by the new
job. It should take bot, job as parameters, where job is the telegram.ext.
Job instance. It can be used to access its Job . context or change it to a repeating
job.

e interval (int | float | datetime.timedelta) — The interval in which the
job will run. If it is an int or a f1loat, it will be interpreted as seconds.

3.1.

telegram.ext package 21

Python Telegram Bot Documentation, Release 12.2.0

e first (int | float | datetime.timedelta | datetime.datetime |
datetime.time, optional) — Time in or at which the job should run. This pa-
rameter will be interpreted depending on its type.

int or float will be interpreted as “seconds from now” in which the job should
run.

— datetime.timedelta will be interpreted as “time from now” in which the job
should run.

— datetime.datetime will be interpreted as a specific date and time at which
the job should run.

— datetime.time will be interpreted as a specific time of day at which the job
should run. This could be either today or, if the time has already passed, tomorrow.

Defaults to interval

* context (object, optional) — Additional data needed for the callback function.
Can be accessed through job.context in the callback. Defaults to None.

* name (str, optional) — The name of the new job. Defaults to callback.
__name__.

Returns The new Job instance that has been added to the job queue.

Return type telegram.ext.Job

Notes

interval is always respected “as-is”. That means that if DST changes during that interval, the job might
not run at the time one would expect. It is always recommended to pin servers to UTC time, then time
related behaviour can always be expected.

start ()
Starts the job_queue thread.

stop ()
Stops the thread.

tick ()
Run all jobs that are due and re-enqueue them with their interval.

3.1.6 telegram.ext.MessageQueue

class telegram.ext.MessageQueue (all_burst_limit=30, all_time_limit_ms=1000,
group_burst_limit=20, group_time_limit_ms=60000,

exc_route=None, autostart=True)
Bases: object

Implements callback processing with proper delays to avoid hitting Telegram’s message limits. Contains
two DelayQueue, for group and for all messages, interconnected in delay chain. Callables are processed
through group DelayQueue, then through all DelayQueue for group-type messages. For non-group
messages, only the all DelayQueue is used.

Parameters

* all burst_limit (int, optional) — Number of maximum all-type callbacks to
process per time-window defined by all_time_limit_ms. Defaults to 30.

* all_time_limit_ms (int, optional) — Defines width of all-fype time-window used
when each processing limit is calculated. Defaults to 1000 ms.

* group_burst_limit (int, optional) — Number of maximum group-type callbacks
to process per time-window defined by group_time_limit_ms. Defaults to 20.

22 Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

* group_time_limit_ms (int, optional) — Defines width of group-type time-
window used when each processing limit is calculated. Defaults to 60000 ms.

* exc_route (callable, optional) — A callable, accepting one positional argu-
ment; used to route exceptions from processor threads to main thread; is called on
Exception subclass exceptions. If not provided, exceptions are routed through
dummy handler, which re-raises them.

* autostart (bool, optional) — If True, processors are started immediately after ob-
ject’s creation; if False, should be started manually by start method. Defaults to
True.

__call__ (promise, is_group_msg=False)
Processes callables in troughput-limiting queues to avoid hitting limits (specified withburst_limit
and time_limit.

Parameters

* promise (callable) — Mainly the telegram.utils.promise.Promise
(see Notes for other callables), that is processed in delay queues.

* is_group_msg (bool, optional) — Defines whether promise would be processed
in group*+*all* DelayQueue” s (if set to " True), or only through all
DelayQueue (if set to False), resulting in needed delays to avoid hitting specified
limits. Defaults to False.

Notes

Method is designed to accept telegram.utils.promise.Promise as promise argument,
but other callables could be used too. For example, lambdas or simple functions could be used to wrap
original func to be called with needed args. In that case, be sure that either wrapper func does not raise
outside exceptions or the proper exc_route handler is provided.

Returns Used as promi se argument.
Return type callable

__init__ (all_burst_limit=30, all_time_limit_ms=1000, group_burst_limit=20,
group_time_limit_ms=60000, exc_route=None, autostart=True)
Initialize self. See help(type(self)) for accurate signature.

__weakref
list of weak references to the object (if defined)

start ()
Method is used to manually start the Me ssageQueue processing.

stop (timeout=None)
Used to gently stop processor and shutdown its thread.

Parameters timeout (float) — Indicates maximum time to wait for processor to stop
and its thread to exit. If timeout exceeds and processor has not stopped, method silently
returns. is_alive could be used afterwards to check the actual status. t imeout set
to None, blocks until processor is shut down. Defaults to None.

3.1.7 telegram.ext.DelayQueue

class telegram.ext.DelayQueue (queue=None, burst_limit=30, time_limit_ms=1000,

exc_route=None, autostart=True, name=None)
Bases: threading.Thread

Processes callbacks from queue with specified throughput limits. Creates a separate thread to process call-
backs with delays.

3.1. telegram.ext package 23

Python Telegram Bot Documentation, Release 12.2.0

burst_limit
Number of maximum callbacks to process per time-window.

Type int

time limit
Defines width of time-window used when each processing limit is calculated.

Type int

exc_route
A callable, accepting 1 positional argument; used to route exceptions from processor thread to main
thread;

Type callable

name
Thread’s name.

Type str

Parameters

* queue (Queue, optional) — Used to pass callbacks to thread. Creates Queue implicitly
if not provided.

* burst_limit (int, optional) — Number of maximum callbacks to process per time-
window defined by time_1limit_ms. Defaults to 30.

* time_limit_ms (int, optional) — Defines width of time-window used when each
processing limit is calculated. Defaults to 1000.

* exc_route (callable, optional) — A callable, accepting 1 positional argument;
used to route exceptions from processor thread to main thread; is called on Exception
subclass exceptions. If not provided, exceptions are routed through dummy handler,
which re-raises them.

* autostart (bool, optional) — If True, processor is started immediately after object’s
creation; if False, should be started manually by sfart method. Defaults to True.

* name (str, optional) — Thread’s name. Defaults to 'DelayQueue-N"', where N is
sequential number of object created.
__call__ (func, *args, **kwargs)
Used to process callbacks in throughput-limiting thread through queue.
Parameters

e func (callable) — The actual function (or any callable) that is processed through
queue.

* xargs (1ist)— Variable-length func arguments.
* xxkwargs (dict) — Arbitrary keyword-arguments to func.

__init__ (queue=None, burst_limit=30, time_limit_ms=1000, exc_route=None, autostart=True,

name=None)
This constructor should always be called with keyword arguments. Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is
called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N” where N
is a small decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

24 Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

If a subclass overrides the constructor, it must make sure to invoke the base class constructor
(Thread.__init__()) before doing anything else to the thread.

run ()
Do not use the method except for unthreaded testing purposes, the method normally is automatically
called by autostart argument.

stop (timeout=None)
Used to gently stop processor and shutdown its thread.

Parameters timeout (float) — Indicates maximum time to wait for processor to stop
and its thread to exit. If timeout exceeds and processor has not stopped, method silently
returns. is_alive could be used afterwards to check the actual status. t imeout set
to None, blocks until processor is shut down. Defaults to None.

3.1.8 telegram.ext.CallbackContext

class telegram.ext.CallbackContext (dispatcher)
This is a context object passed to the callback called by telegram.ext.Handler or by the
telegram.ext.Dispatcher in an error handler added by telegram.ext.Dispatcher.
add_error_handler or to the callback of a telegram.ext . Job.

Note: telegram.ext.Dispatcher will create a single context for an entire update. This means that
if you got 2 handlers in different groups and they both get called, they will get passed the same Callback-
Context object (of course with proper attributes like .matches differing). This allows you to add custom
attributes in a lower handler group callback, and then subsequently access those attributes in a higher han-
dler group callback. Note that the attributes on CallbackContext might change in the future, so make sure
to use a fairly unique name for the attributes.

Warning: Do not combine custom attributes and @run_async. Due to how @run_async works, it will
almost certainly execute the callbacks for an update out of order, and the attributes that you think you
added will not be present.

chat_data
A dict that can be used to keep any data in. For each update from the same chat it will be the same
dict.

Type dict, optional

user_data
A dict that can be used to keep any data in. For each update from the same user it will be the same
dict.

Type dict, optional

matches
If the associated update originated from a regex-supported handler or had a Filters. regex, this
will contain a list of match objects for every pattern where re.search (pattern, string)
returned a match. Note that filters short circuit, so combined regex filters will not always be evaluated.

Type Listfre match object], optional

args
Arguments passed to a command if the associated update is handled by telegram.
ext.CommandHandler, telegram.ext.PrefixHandler or telegram.ext.
StringCommandHandler. It contains a list of the words in the text after the command,
using any whitespace string as a delimiter.

Type List[str], optional

3.1. telegram.ext package 25

Python Telegram Bot Documentation, Release 12.2.0

error
The Telegram error that was raised. Only present when passed to a error handler registered with
telegram.ext.Dispatcher.add_error_handler.

Type telegram.TelegramError, optional
job
The job that that originated this callback. Only present when passed to the callback of telegram.
ext.Job.
Type telegram.ext.Job

bot
The bot associated with this context.

Type telegram.Bot

job_queue
The JobQueue used by the telegram.ext.Dispatcher and (usually) the telegram.ext.
Updater associated with this context.

Type telegram.ext.JobQueue

match
The first match from matches. Useful if you are only filtering using a single regex filter. Returns
None if matches is empty.

Type Regex match type

update_queue
The Queue instance used by the telegram.ext.Dispatcher and (usually) the telegram.
ext .Updater associated with this context.

Type queue.Queue

3.1.9 Handlers

telegram.ext.Handler

class telegram.ext.Handler (callback, pass_update_queue=False, pass_job_queue=False,

pass_user_data=False, pass_chat_data=False)
Bases: object

The base class for all update handlers. Create custom handlers by inheriting from it.

callback
The callback function for this handler.

Type callable

pass_update_queue
Determines whether update_queue will be passed to the callback function.

Type bool

pass_job_queue
Determines whether job_queue will be passed to the callback function.

Type bool

pass_user_data
Determines whether user_data will be passed to the callback function.

Type bool

pass_chat_data
Determines whether chat_data will be passed to the callback function.

26 Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

Type bool

Note: pass_user dataand pass_chat_data determine whether a dict you can use to keep any
data in will be sent to the callback function. Related to either the user or the chat that the update was
sent in. For each update from the same user or in the same chat, it will be the same dict.

Note that this is DEPRECATED, and you should use context based callbacks. See https://git.io/fxJuV for
more info.

Parameters

e callback (callable)— The callback function for this handler. Will be called when
check_update has determined that an update should be processed by this handler.
Callback signature for context based API:

def callback (update: Update, context: CallbackContext)

The return value of the callback is usually ignored except for the special case of
telegram.ext.ConversationHandler.

* pass_update_queue (bool, optional) — If set to True, a keyword argument called
update_queue will be passed to the callback function. It will be the Queue instance
used by the telegram.ext.Updater and telegram.ext.Dispatcher that
contains new updates which can be used to insert updates. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_job_queue (bool, optional) — If set to True, a keyword argument called
job_queue will be passed to the callback function. It will be a telegram.ext.
JobQueue instance created by the telegram. ext . Updater which can be used to
schedule new jobs. Default is False. DEPRECATED: Please switch to context based
callbacks.

* pass_user_data (bool, optional) — If set to True, a keyword argument called
user_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_chat_data (bool, optional) — If set to True, a keyword argument called
chat_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

check_update (update)
This method is called to determine if an update should be handled by this handler instance. It should
always be overridden.

Parameters update (str | telegram. Update)— The update to be tested.

Returns FEither None or False if the update should not be handled. Otherwise an object
that will be passed to handle update and collect_additional_context
when the update gets handled.

collect_additional_context (context, update, dispatcher, check_result)
Prepares additional arguments for the context. Override if needed.

Parameters
* context (telegram.ext.CallbackContext)— The context object.
* update (telegram. Update) — The update to gather chat/user id from.
e dispatcher (telegram.ext.Dispatcher)— The calling dispatcher.

¢ check_result — The result (return value) from check_ update.

3.1. telegram.ext package 27

https://git.io/fxJuV

Python Telegram Bot Documentation, Release 12.2.0

collect_optional_args (dispatcher, update=None, check_result=None)
Prepares the optional arguments. If the handler has additional optional args, it should subclass this
method, but remember to call this super method.

DEPRECATED: This method is being replaced by new context based callbacks. Please see https:
//git.io/fxJuV for more info.

Parameters
* dispatcher (telegram.ext.Dispatcher)— The dispatcher.
* update (telegram. Update) — The update to gather chat/user id from.
* check_result — The result from check_update

handle_update (update, dispatcher, check_result, context=None)
This method is called if it was determined that an update should indeed be handled by this instance.
Calls self.callback along with its respectful arguments. To work with the telegram.ext.
ConversationHandler, this method returns the value returned from self.callback. Note
that it can be overridden if needed by the subclassing handler.

Parameters
* update (str | telegram. Update)— The update to be handled.
e dispatcher (telegram.ext.Dispatcher)— The calling dispatcher.

¢ check_result — The result from check update.

telegram.ext.CallbackQueryHandler

class telegram.ext.CallbackQueryHandler (callback, pass_update_queue=False,
pass_job_queue=False, pat-
tern=None, pass_groups=False,

pass_groupdict=False, pass_user_data=False,

pass_chat_data=False)
Bases: telegram.ext.handler.Handler

Handler class to handle Telegram callback queries. Optionally based on a regex.
Read the documentation of the re module for more information.

callback
The callback function for this handler.

Type callable

pass_update_queue
Determines whether update_queue will be passed to the callback function.

Type bool

pass_job_queue
Determines whether job_queue will be passed to the callback function.

Type bool

pattern
Optional. Regex pattern to test telegram.CallbackQuery.data against.

Type str | Pattern

pass_groups
Determines whether groups will be passed to the callback function.

Type bool

pass_groupdict
Determines whether groupdict. will be passed to the callback function.

28 Chapter 3. Reference

https://git.io/fxJuV
https://git.io/fxJuV

Python Telegram Bot Documentation, Release 12.2.0

Type bool

pass_user_data
Determines whether user_data will be passed to the callback function.

Type bool

pass_chat_data
Determines whether chat_data will be passed to the callback function.

Type bool

Note: pass user dataand pass_chat_data determine whether a dict you can use to keep any
data in will be sent to the callback function. Related to either the user or the chat that the update was
sent in. For each update from the same user or in the same chat, it will be the same dict.

Note that this is DEPRECATED, and you should use context based callbacks. See https://git.io/fxJuV for
more info.

Parameters

e callback (callable)— The callback function for this handler. Will be called when
check_update has determined that an update should be processed by this handler.
Callback signature for context based API:

def callback (update: Update, context:
CallbackContext)

The return value of the callback is usually ignored except for the special case of
telegram.ext.ConversationHandler.

* pass_update_queue (bool, optional) — If set to True, a keyword argument called
update_queue will be passed to the callback function. It will be the Queue instance
used by the telegram.ext.Updater and telegram.ext.Dispatcher that
contains new updates which can be used to insert updates. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_Jjob_queue (bool, optional) — If set to True, a keyword argument called
job_queue will be passed to the callback function. It will be a telegram.ext.
JobQueue instance created by the telegram. ext . Updater which can be used to
schedule new jobs. Default is False. DEPRECATED: Please switch to context based
callbacks.

* pattern (str | Pattern, optional) — Regex pattern. If not None, re .match is used
on telegram.CallbackQuery.data to determine if an update should be handled
by this handler.

* pass_groups (bool, optional) — If the callback should be passed the result of re.
match (pattern, data) .groups () as a keyword argument called groups.
Default is False DEPRECATED: Please switch to context based callbacks.

* pass_groupdict (bool, optional) — If the callback should be passed the result
of re.match (pattern, data).groupdict () as a keyword argument called
groupdict. Default is False DEPRECATED: Please switch to context based call-
backs.

* pass_user_data (bool, optional) — If set to True, a keyword argument called
user_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_chat_data (bool, optional) — If set to True, a keyword argument called
chat_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

3.1. telegram.ext package 29

https://git.io/fxJuV

Python Telegram Bot Documentation, Release 12.2.0

check_update (update)
Determines whether an update should be passed to this handlers callback.

Parameters update (telegram. Update) — Incoming telegram update.
Returns bool

collect_additional_context (context, update, dispatcher, check_result)
Prepares additional arguments for the context. Override if needed.

Parameters
e context (telegram.ext.CallbackContext)— The context object.
* update (telegram. Update)— The update to gather chat/user id from.
* dispatcher (telegram.ext.Dispatcher)— The calling dispatcher.
e check_result — The result (return value) from check_update.

collect_optional_args (dispatcher, update=None, check_result=None)
Prepares the optional arguments. If the handler has additional optional args, it should subclass this
method, but remember to call this super method.

DEPRECATED: This method is being replaced by new context based callbacks. Please see https:
//git.io/fxJuV for more info.

Parameters
* dispatcher (telegram.ext.Dispatcher)— The dispatcher.
* update (telegram. Update) — The update to gather chat/user id from.

* check_result — The result from check_update

telegram.ext.ChosenlnlineResultHandler

class telegram.ext.ChosenInlineResultHandler (callback, pass_update_queue=False,
pass_job_queue=False,
pass_user_data=False,

pass_chat_data=False)
Bases: telegram.ext.handler.Handler

Handler class to handle Telegram updates that contain a chosen inline result.

callback
The callback function for this handler.

Type callable

pass_update_queue
Determines whether update_queue will be passed to the callback function.

Type bool

pass_job_queue
Determines whether job_queue will be passed to the callback function.

Type bool

pass_user_data
Determines whether user_data will be passed to the callback function.

Type bool

pass_chat_data
Determines whether chat_data will be passed to the callback function.

Type bool

30 Chapter 3. Reference

https://git.io/fxJuV
https://git.io/fxJuV

Python Telegram Bot Documentation, Release 12.2.0

Note: pass user dataand pass_chat_data determine whether a dict you can use to keep any
data in will be sent to the callback function. Related to either the user or the chat that the update was
sent in. For each update from the same user or in the same chat, it will be the same dict.

Note that this is DEPRECATED, and you should use context based callbacks. See https://git.io/fxJuV for
more info.

Parameters

e callback (callable)— The callback function for this handler. Will be called when
check_update has determined that an update should be processed by this handler.
Callback signature for context based API:

def callback (update: Update, context: CallbackContext)

The return value of the callback is usually ignored except for the special case of
telegram.ext.ConversationHandler.

* pass_update_queue (bool, optional) — If set to True, a keyword argument called
update_queue will be passed to the callback function. It will be the Queue instance
used by the telegram.ext.Updater and telegram.ext.Dispatcher that
contains new updates which can be used to insert updates. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_Jjob_queue (bool, optional) — If set to True, a keyword argument called
job_queue will be passed to the callback function. It will be a telegram.ext.
JobQueue instance created by the telegram. ext . Updater which can be used to
schedule new jobs. Default is False. DEPRECATED: Please switch to context based
callbacks.

* pass_user_data (bool, optional) — If set to True, a keyword argument called
user_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_chat_data (bool, optional) — If set to True, a keyword argument called
chat_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

check_update (update)
Determines whether an update should be passed to this handlers calIback.

Parameters update (telegram. Update) — Incoming telegram update.

Returns bool

telegram.ext.ConversationHandler

class telegram.ext.ConversationHandler (entry_points, states, fallbacks, al-
low_reentry=False, per_chat=True,
per_user=True, per_message=False, con-
versation_timeout=None, name=None, persis-

tent=False, map_to_parent=None)
Bases: telegram.ext.handler.Handler

A handler to hold a conversation with a single user by managing four collections of other handlers. Note that
neither posts in Telegram Channels, nor group interactions with multiple users are managed by instances of
this class.

The first collection, a 1ist named entry_points,is used to initiate the conversation, for example with
atelegram.ext.CommandHandler or telegram.ext.RegexHandler.

3.1. telegram.ext package 31

https://git.io/fxJuV

Python Telegram Bot Documentation, Release 12.2.0

The second collection, a dict named states, contains the different conversation steps and one or more
associated handlers that should be used if the user sends a message when the conversation with them
is currently in that state. Here you can also define a state for TTMEOUT to define the behavior when
conversation timeout is exceeded, and a state for WAT TTNG to define behavior when a new update
is received while the previous @run_async decorated handler is not finished.

The third collection, a 1ist named fallbacks, is used if the user is currently in a conversation but the
state has either no associated handler or the handler that is associated to the state is inappropriate for the
update, for example if the update contains a command, but a regular text message is expected. You could
use this for a /cancel command or to let the user know their message was not recognized.

To change the state of conversation, the callback function of a handler must return the new state after
responding to the user. If it does not return anything (returning None by default), the state will not change.
If an entry point callback function returns None, the conversation ends immediately after the execution of
this callback function. To end the conversation, the callback function must return £ZND or —1. To handle the
conversation timeout, use handler TTMEOUT or —2.

Note: In each of the described collections of handlers, a handler may in turn be a
ConversationHandler. Inthat case, the nested ConversationHandler should have the attribute
map_to_parent which allows to return to the parent conversation at specified states within the nested
conversation.

Note that the keys in map_to_parent must not appear as keys in states attribute or else the latter will
be ignored. You may map END to one of the parents states to continue the parent conversation after this
has ended or even map a state to END to end the parent conversation from within the nested one. For an
example on nested ConversationHandler s, see our examples.

entry_points
A list of Handler objects that can trigger the start of the conversation.

Type List{telegram.ext.Handler]

states
A dict that defines the different states of conversation a user can be in and one or more associated
Handler objects that should be used in that state.

Type Dict[object, List{telegram.ext.Handler]]

fallbacks
A list of handlers that might be used if the user is in a conversation, but every handler for their current
state returned False on check_update.

Type List{telegram.ext.Handler]

allow_reentry
Determines if a user can restart a conversation with an entry point.

Type bool

per_chat
If the conversationkey should contain the Chat’s ID.

Type bool

per_user
If the conversationkey should contain the User’s ID.

Type bool

per_message
If the conversationkey should contain the Message’s ID.

Type bool

32 Chapter 3. Reference

https://github.com/python-telegram-bot/python-telegram-bot/blob/master/examples

Python Telegram Bot Documentation, Release 12.2.0

conversation_timeout
Optional. When this handler is inactive more than this timeout (in seconds), it will be automatically
ended. If this value is O (default), there will be no timeout. When it’s triggered, the last received
update will be handled by ALL the handler’s who’s check_update method returns True that are in the
state ConversationHandler.TIMEQOUT.

Type float' |:0bj: datetime.timedelta

name
Optional. The name for this conversationhandler. Required for persistence

Type str

persistent
Optional. If the conversations dict for this handler should be saved. Name is required and persistence
hastobe setin telegram.ext.Updater

Type bool

map_to_parent
Optional. A dict that can be used to instruct a nested conversationhandler to transition into a mapped
state on its parent conversationhandler in place of a specified nested state.

Type Dict[object, object]

Parameters

* entry_points (List{telegram.ext.Handler]) — A list of Handler objects
that can trigger the start of the conversation. The first handler which check _update
method returns True will be used. If all return False, the update is not handled.

e states (Dictfobject, Listftelegram.ext.Handler]]) — A dict that de-
fines the different states of conversation a user can be in and one or more associ-
ated Handler objects that should be used in that state. The first handler which
check_update method returns True will be used.

* fallbacks (List{telegram.ext.Handler]) — A list of handlers that might be
used if the user is in a conversation, but every handler for their current state returned
False on check_update. The first handler which check_update method returns
True will be used. If all return False, the update is not handled.

* allow_reentry (bool, optional) — If set to True, a user that is currently in a
conversation can restart the conversation by triggering one of the entry points.

* per_chat (bool, optional) — If the conversationkey should contain the Chat’s ID.
Default is True.

* per_user (bool, optional) — If the conversationkey should contain the User’s ID.
Default is True.

* per_message (bool, optional) — If the conversationkey should contain the Mes-
sage’s ID. Default is False.

* conversation_timeout (float | datetime.timedelta, optional) — When
this handler is inactive more than this timeout (in seconds), it will be automatically
ended. If this value is O or None (default), there will be no timeout. The last received
update will be handled by ALL the handler’s who’s check_update method returns True
that are in the state ConversationHandler. TIMEOUT.

* name (str, optional) — The name for this conversationhandler. Required for persis-
tence

* persistent (bool, optional) — If the conversations dict for this handler should be
saved. Name is required and persistence has to be setin telegram. ext.Updater

3.1. telegram.ext package 33

Python Telegram Bot Documentation, Release 12.2.0

* map_to_parent (Dictfobject, object], optional) — A dict that can be used
to instruct a nested conversationhandler to transition into a mapped state on its parent
conversationhandler in place of a specified nested state.

Raises ValueError
END = -1
Used as a constant to return when a conversation is ended.
Type int

TIMEOUT = -2
Used as a constant to handle state when a conversation is timed out.

Type int

WAITING = -3
Used as a constant to handle state when a conversation is still waiting on the previous @run_sync
decorated running handler to finish.

Type int

check_update (update)
Determines whether an update should be handled by this conversationhandler, and if so in which state
the conversation currently is.

Parameters update (telegram. Update) — Incoming telegram update.
Returns bool

handle_update (update, dispatcher, check_result, context=None)
Send the update to the callback for the current state and Handler

Parameters

* check_result — The result from check_update. For this handler it’s a tuple of key,
handler, and the handler’s check result.

* update (telegram. Update) — Incoming telegram update.

e dispatcher (telegram.ext.Dispatcher) — Dispatcher that originated the
Update.

persistence = None
The persistence used to store conversations. Set by dispatcher

Type telegram.ext.BasePersistance

telegram.ext.CommandHandler

class telegram.ext.CommandHandler (command, callback, filters=None, allow_edited=None,

pass_args=False, pass_update_queue=False,
pass_job_queue=False, pass_user_data=False,

pass_chat_data=False)
Bases: telegram.ext.handler.Handler

Handler class to handle Telegram commands.

Commands are Telegram messages that start with /, optionally followed by an @ and the bot’s name
and/or some additional text. The handler will add a 1ist to the CallbackContext named
CallbackContext.args. It will contain a list of strings, which is the text following the command
split on single or consecutive whitespace characters.

By default the handler listens to messages as well as edited messages. To change this behavior use
~Filters.update.edited_message in the filter argument.

34

Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

command
The command or list of commands this handler should listen for. Limitations are the same as described
here https://core.telegram.org/bots#commands

Type str|List[str]

callback
The callback function for this handler.

Type callable

filters
Optional. Only allow updates with these Filters.

Type telegram.ext.BaseFilter

allow_edited
Determines Whether the handler should also accept edited messages.

Type bool

pass_args
Determines whether the handler should be passed args.

Type bool

pass_update_queue
Determines whether update_queue will be passed to the callback function.

Type bool

pass_job_queue
Determines whether job_queue will be passed to the callback function.

Type bool

pass_user_data
Determines whether user_data will be passed to the callback function.

Type bool

pass_chat_data
Determines whether chat_data will be passed to the callback function.

Type bool

Note: pass user dataand pass_chat_data determine whether a dict you can use to keep any
data in will be sent to the callback function. Related to either the user or the chat that the update was
sent in. For each update from the same user or in the same chat, it will be the same dict.

Note that this is DEPRECATED, and you should use context based callbacks. See https://git.io/fxJuV for
more info.

Parameters

e command (str | List[str]) — The command or list of commands this handler should
listen for. Limitations are the same as described here https://core.telegram.org/bots#
commands

e callback (callable)— The callback function for this handler. Will be called when
check_update has determined that an update should be processed by this handler.
Callback signature for context based API:

def callback (update: Update, context: CallbackContext)

The return value of the callback is usually ignored except for the special case of
telegram.ext.ConversationHandler.

3.1. telegram.ext package 35

https://core.telegram.org/bots#commands
https://git.io/fxJuV
https://core.telegram.org/bots#commands
https://core.telegram.org/bots#commands

Python Telegram Bot Documentation, Release 12.2.0

» filters (telegram.ext.BaseFilter, optional) — A filter inheriting from
telegram.ext.filters.BaseFilter. Standard filters can be found in
telegram.ext.filters.Filters. Filters can be combined using bitwise op-
erators (& for and, | for or, ~ for not).

* allow_edited (bool, optional) — Determines whether the handler should also ac-
cept edited messages. Default is False. DEPRECATED: Edited is allowed by default.
To change this behavior use ~Filters.update.edited_message.

* pass_args (bool, optional) — Determines whether the handler should be passed the
arguments passed to the command as a keyword argument called args. It will contain
a list of strings, which is the text following the command split on single or consecutive
whitespace characters. Default is False DEPRECATED: Please switch to context
based callbacks.

* pass_update_queue (bool, optional) — If set to True, a keyword argument called
update_queue will be passed to the callback function. It will be the Queue instance
used by the telegram.ext.Updater and telegram.ext.Dispatcher that
contains new updates which can be used to insert updates. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_job_queue (bool, optional) — If set to True, a keyword argument called
job_queue will be passed to the callback function. It will be a telegram.ext.
JobQueue instance created by the telegram. ext . Updater which can be used to
schedule new jobs. Default is False. DEPRECATED: Please switch to context based
callbacks.

* pass_user_data (bool, optional) — If set to True, a keyword argument called
user_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_chat_data (bool, optional) — If set to True, a keyword argument called
chat_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

Raises ValueError - when command is too long or has illegal chars.
check_update (update)
Determines whether an update should be passed to this handlers callback.
Parameters update (telegram. Update)— Incoming telegram update.
Returns The list of args for the handler
Return type list

collect_additional_context (context, update, dispatcher, check_result)
Prepares additional arguments for the context. Override if needed.

Parameters
* context (telegram.ext.CallbackContext)— The context object.
* update (telegram. Update) — The update to gather chat/user id from.
* dispatcher (telegram.ext.Dispatcher)— The calling dispatcher.
¢ check_result — The result (return value) from check_update.

collect_optional_args (dispatcher, update=None, check_result=None)
Prepares the optional arguments. If the handler has additional optional args, it should subclass this
method, but remember to call this super method.

DEPRECATED: This method is being replaced by new context based callbacks. Please see https:
//git.io/fxJuV for more info.

Parameters

36 Chapter 3. Reference

https://git.io/fxJuV
https://git.io/fxJuV

Python Telegram Bot Documentation, Release 12.2.0

* dispatcher (telegram.ext.Dispatcher)— The dispatcher.
* update (telegram. Update) — The update to gather chat/user id from.

* check_result — The result from check_update

telegram.ext.InlineQueryHandler

class telegram.ext.InlineQueryHandler (callback, pass_update_queue=False,
pass_job_queue=False, pattern=None,
pass_groups=False, pass_groupdict=False,

pass_user_data=False, pass_chat_data=False)
Bases: telegram.ext.handler.Handler

Handler class to handle Telegram inline queries. Optionally based on a regex. Read the documentation of
the re module for more information.

callback
The callback function for this handler.

Type callable

pass_update_queue
Determines whether update_queue will be passed to the callback function.

Type bool

pass_job_queue
Determines whether job_queue will be passed to the callback function.

Type bool

pattern
Optional. Regex pattern to test telegram. InlineQuery.query against.

Type strlPattern

pass_groups
Determines whether groups will be passed to the callback function.

Type bool

pass_groupdict
Determines whether groupdict. will be passed to the callback function.

Type bool

pass_user_data
Determines whether user_data will be passed to the callback function.

Type bool

pass_chat_data
Determines whether chat_data will be passed to the callback function.

Type bool

Note: pass user dataand pass_chat_data determine whether a dict you can use to keep any
data in will be sent to the callback function. Related to either the user or the chat that the update was
sent in. For each update from the same user or in the same chat, it will be the same dict.

Note that this is DEPRECATED, and you should use context based callbacks. See https://git.io/fxJuV for
more info.

Parameters

3.1. telegram.ext package 37

https://git.io/fxJuV

Python Telegram Bot Documentation, Release 12.2.0

e callback (callable)— The callback function for this handler. Will be called when
check_update has determined that an update should be processed by this handler.
Callback signature for context based API:

def callback (update: Update, context: CallbackContext)

The return value of the callback is usually ignored except for the special case of
telegram.ext.ConversationHandler.

* pass_update_queue (bool, optional) — If set to True, a keyword argument called
update_queue will be passed to the callback function. It will be the Queue instance
used by the telegram.ext.Updater and telegram.ext.Dispatcher that
contains new updates which can be used to insert updates. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_Jjob_queue (bool, optional) — If set to True, a keyword argument called
job_queue will be passed to the callback function. It will be a telegram.ext.
JobQueue instance created by the telegram. ext . Updater which can be used to
schedule new jobs. Default is False. DEPRECATED: Please switch to context based
callbacks.

* pattern (str | Pattern, optional) — Regex pattern. If not None, re.match
isused on telegram.InlineQuery.query to determine if an update should be
handled by this handler.

* pass_groups (bool, optional) — If the callback should be passed the result of re.
match (pattern, data) .groups () as a keyword argument called groups.
Default is False DEPRECATED: Please switch to context based callbacks.

* pass_groupdict (bool, optional) — If the callback should be passed the result
of re.match (pattern, data).groupdict () as a keyword argument called
groupdict. Default is False DEPRECATED: Please switch to context based call-
backs.

* pass_user_data (bool, optional) — If set to True, a keyword argument called
user_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_chat_data (bool, optional) — If set to True, a keyword argument called
chat_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

check_update (update)
Determines whether an update should be passed to this handlers callback.
Parameters update (telegram. Update) — Incoming telegram update.
Returns bool

collect_additional_context (context, update, dispatcher, check_result)
Prepares additional arguments for the context. Override if needed.

Parameters
e context (telegram.ext.CallbackContext)— The context object.
* update (telegram. Update)— The update to gather chat/user id from.
* dispatcher (telegram.ext.Dispatcher)— The calling dispatcher.
e check_result — The result (return value) from check_update.

collect_optional_args (dispatcher, update=None, check_result=None)
Prepares the optional arguments. If the handler has additional optional args, it should subclass this
method, but remember to call this super method.

DEPRECATED: This method is being replaced by new context based callbacks. Please see https:
//git.io/fxJuV for more info.

38

Chapter 3. Reference

https://git.io/fxJuV
https://git.io/fxJuV

Python Telegram Bot Documentation, Release 12.2.0

Parameters
* dispatcher (telegram.ext.Dispatcher)— The dispatcher.
* update (telegram. Update) — The update to gather chat/user id from.

* check_result — The result from check_update

telegram.ext.MessageHandler

class telegram.ext .MessageHandler (filters, callback, pass_update_queue=False,
pass_job_queue=False, pass_user_data=False,
pass_chat_data=False, message_updates=None,

channel_post_updates=None, edited_updates=None)
Bases: telegram.ext.handler.Handler

Handler class to handle telegram messages. They might contain text, media or status updates.

filters
Only allow updates with these Filters. See telegram.ext. filters for a full list of all available
filters.

Type Filter

callback
The callback function for this handler.

Type callable

pass_update_queue
Determines whether update_queue will be passed to the callback function.

Type bool

pass_job_queue
Determines whether job_queue will be passed to the callback function.

Type bool

pass_user_data
Determines whether user_data will be passed to the callback function.

Type bool

pass_chat_data
Determines whether chat_data will be passed to the callback function.

Type bool

message_updates
Should “normal” message updates be handled? Default is None.

Type bool

channel_ post_updates
Should channel posts updates be handled? Default is None.

Type bool

edited updates
Should “edited” message updates be handled? Default is None.

Type bool

Note: pass user dataand pass_chat_data determine whether a dict you can use to keep any
data in will be sent to the callback function. Related to either the user or the chat that the update was
sent in. For each update from the same user or in the same chat, it will be the same dict.

3.1. telegram.ext package 39

Python Telegram Bot Documentation, Release 12.2.0

Note that this is DEPRECATED, and you should use context based callbacks. See https://git.io/fxJuV for
more info.

Parameters

» filters (telegram.ext.BaseFilter, optional) — A filter inheriting from
telegram.ext.filters.BaseFilter. Standard filters can be found in
telegram.ext.filters.Filters. Filters can be combined using bitwise op-
erators (& for and, | for or, ~ for not). Default is telegram.ext.filters.
Filters.update. This defaults to all message_type updates being: message,
edited_message, channel_post and edited_channel_post. If you don’t
want or need any of those pass ~Filters.update. * in the filter argument.

e callback (callable)— The callback function for this handler. Will be called when
check_update has determined that an update should be processed by this handler.
Callback signature for context based API:

def callback (update: Update, context: CallbackContext)

The return value of the callback is usually ignored except for the special case of
telegram.ext.ConversationHandler.

* pass_update_queue (bool, optional) — If set to True, a keyword argument called
update_queue will be passed to the callback function. It will be the Queue instance
used by the telegram.ext.Updater and telegram.ext.Dispatcher that
contains new updates which can be used to insert updates. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_job_queue (bool, optional) — If set to True, a keyword argument called
job_queue will be passed to the callback function. It will be a telegram.ext.
JobQueue instance created by the telegram. ext . Updater which can be used to
schedule new jobs. Default is False. DEPRECATED: Please switch to context based
callbacks.

* pass_user_data (bool, optional) — If set to True, a keyword argument called
user_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_chat_data (bool, optional) — If set to True, a keyword argument called
chat_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* message_updates (bool, optional) — Should “normal” message updates be han-
dled? Default is None. DEPRECATED: Please switch to filters for update filtering.

channel_post_updates (bool, optional) — Should channel posts updates be han-
dled? Default is None. DEPRECATED: Please switch to filters for update filtering.

* edited_updates (bool, optional) — Should “edited” message updates be handled?
Default is None. DEPRECATED: Please switch to filters for update filtering.

Raises ValueError
check_update (update)
Determines whether an update should be passed to this handlers callback.
Parameters update (telegram. Update) — Incoming telegram update.
Returns bool

collect_additional_context (context, update, dispatcher, check_result)
Prepares additional arguments for the context. Override if needed.

Parameters

e context (telegram.ext.CallbackContext)— The context object.

40 Chapter 3. Reference

https://git.io/fxJuV

Python Telegram Bot Documentation, Release 12.2.0

* update (telegram. Update)— The update to gather chat/user id from.
* dispatcher (telegram.ext.Dispatcher)— The calling dispatcher.

e check_result — The result (return value) from check_update.

telegram.ext.PreCheckoutQueryHandler

class telegram.ext.PreCheckoutQueryHandler (callback, pass_update_queue=False,
pass_job_queue=False,
pass_user_data=False,

pass_chat_data=False)
Bases: telegram.ext.handler.Handler

Handler class to handle Telegram PreCheckout callback queries.

callback
The callback function for this handler.

Type callable

pass_update_queue
Determines whether update_queue will be passed to the callback function.

Type bool

pass_job_queue
Determines whether job_queue will be passed to the callback function.

Type bool

pass_user_data
Determines whether user_data will be passed to the callback function.

Type bool

pass_chat_data
Determines whether chat_data will be passed to the callback function.

Type bool

Note: pass_user dataand pass_chat_data determine whether a dict you can use to keep any
data in will be sent to the callback function. Related to either the user or the chat that the update was
sent in. For each update from the same user or in the same chat, it will be the same dict.

Note that this is DEPRECATED, and you should use context based callbacks. See https://git.io/fxJuV for
more info.

Parameters

e callback (callable)— The callback function for this handler. Will be called when
check_update has determined that an update should be processed by this handler.
Callback signature for context based API:

def callback (update: Update, context: CallbackContext)

The return value of the callback is usually ignored except for the special case of
telegram.ext.ConversationHandler.

* pass_update_queue (bool, optional) — If set to True, a keyword argument
called update_queue will be passed to the callback function. It will be the Queue
DEPRECATED: Please switch to context based callbacks. instance used by the
telegram.ext.Updaterand telegram.ext.Dispatcher that contains new
updates which can be used to insert updates. Default is False.

3.1. telegram.ext package 41

https://git.io/fxJuV

Python Telegram Bot Documentation, Release 12.2.0

* pass_job_queue (bool, optional) — If set to True, a keyword argument called
job_queue will be passed to the callback function. It will be a telegram. ext.
JobQueue instance created by the telegram. ext . Updater which can be used to
schedule new jobs. Default is False. DEPRECATED: Please switch to context based
callbacks.

* pass_user_data (bool, optional) — If set to True, a keyword argument called
user_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

* pass_chat_data (bool, optional) — If set to True, a keyword argument called
chat_data will be passed to the callback function. Default is False. DEPRE-
CATED: Please switch to context based callbacks.

check_update (update)
Determines whether an update should be passed to this handlers callback.
Parameters update (telegram. Update)— Incoming telegram update.

Returns bool

telegram.ext.PrefixHandler

class telegram.ext.PrefixHandler (prefix, command, callback, filters=None,
pass_args=False, pass_update_queue=False,
pass_job_queue=False, pass_user_data=False,

pass_chat_data=False)
Bases: telegram.ext.commandhandler.CommandHandler

Handler class to handle custom prefix commands

This is a intermediate handler between MessageHandler and CommandHandler. It supports con-
figurable commands with the same options as CommandHandler. It will respond to every combination of
prefix and command. It will add a 1ist tothe CallbackContext named CallbackContext.
args. It will contain a list of strings, which is the text following the command split on single or consecutive
whitespace characters.

Examples:

Single prefix and command:
PrefixHandler ('!', 'test', callback) will respond to '!test'.
Multiple prefixes, single command:

PrefixHandler (['!', '#'], 'test', callback) will respond to '!test' and
'#test'.

Miltiple prefixes and commands:
PrefixHandler (['!', '#'], ['test', 'help'], callback) will respond to '!

—test',
'#test', '!help' and '#help'.

By default the handler listens to messages as well as edited messages. To change this behavior use ~*Fil-
ters.update.edited_message* ‘.

prefix
The prefix(es) that will precede command.

Type strlList[str]

command
The command or list of commands this handler should listen for.

42

Chapter 3. Reference

Python Telegram Bot Documentation, Release 12.2.0

Type str|List[str]

callback
The callback function for this handler.

Type callable

filters
Optional. Only allow updates with these Filters.

Type telegram.ext .BaseFilter

pass_args
Determines whether the handler should be passed args.

Type bool

pass_update_queue
Determines whether update_queue will be passed to the callback function.

Type bool

pass_job_queue
Determines whether job_queue will be passed to the callback function.

Type bool

pass_user_data
Determines whether user_data will be passed to the callback function.

Type bool

pass_chat_data
Determines whether chat_data will be passed to the callback function.

Type bool

Note: pass_user_dataand pass_chat_data determine whe